Code: EE3T5

II B.Tech - I Semester - Regular Examinations - December 2015

ELECTROMAGNETIC FIELDS (ELECTRICAL AND ELECTRONICS ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Convert the point P(-2,6,4) into cylindrical coordinates.
 - b) Determine the force between two charge 30mC at A(2,3,4) and -50mC at Q (2,6,8)
 - c) Define Absolute Potential.
 - d) Write down the Ohms law in point form.
 - e) State Divergence Theorem.
 - f) Define Electric Dipole.
 - g) Explain magnet flux.
 - h) Define mutual inductance.
 - i) What do you mean by displacement current?
 - j) What is Polarization?
 - k) Write Poynting theorem?

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

- 2. a) Derive Gauss Law in point form from fundamentals and also write the limitations of Gauss Law.

 8 M
 - b) A charge of -0.3μC is located at A (25, -30, 15) cm and a second charge of 0.5 μ C is located at B (-10, 8, 12) cm. Find the electric field strength, E at:
 i) The origin and ii) Point P (15, 20, 50) cm.
- 3. a) Explain the Electrostatic Boundary conditions. 8 M
 - b) A parallel plate capacitor consists of three dielectric layers. If $Er_1 = 1$, $d_1 = 0.4$ mm, $Er_2 = 1$, $d_2 = 0.6$ mm, $Er_3 = 1$, $d_3 = 0.8$ mm and area of cross-section 20 sqcm. Find Capacitance.
- 4. a) State and explain Biot-Savart's law and also Define the magnetic field intensity (H).
 - b) An infinite long conducting filament is placed along the z-axis and carries a current of 5mA in the z direction. Find H at (2,6,8).
- 5. a) Obtain the expression for inductance of a toroid. 8 M

- b) A solenoid of 10 cm in length consists of 1000 tuns having the cross-section radius at 1 cm. Find the inductance of solenoid. What is the value of current required to maintain a flux of 1 mwb in the toroid. Take $\mu_r = 1500$.
- 6. a) Explain the importance of Maxwell's equations and express those equations in point form and integral form. 8 M
 - b) A parallel-plate capacitor with plate area of 5 cm² and plate separation of 3 mm has a voltage 50 sin 10 ω t volts applied to its plates. Calculate the displacement current. Assuming $\varepsilon = 2 \varepsilon_0$.